Limits to the Effect of Substrate Roughness or Smoothness on the Odd-Even Effect in Wetting Properties of n-Alkanethiolate Monolayers.
نویسندگان
چکیده
This study investigates the effect of roughness on interfacial properties of an n-alkanethiolate self-assembled monolayer (SAM) and uses hydrophobicity to demonstrate the existence of upper and lower limits. This article also sheds light on the origin of the previously unexplained gradual increase in contact angles with increases in the size of the molecule making the SAM. We prepared Au surfaces with a root-mean-square (RMS) roughness of ∼0.2-0.5 nm and compared the wetting properties of n-alkanethiolate (C10-C16) SAMs fabricated on these surfaces. Static contact angles, θ(s), formed between the SAM and water, diethylene glycol, and hexadecane showed an odd-even effect irrespective of the solvent properties. The average differences in subsequent SAM(E) and SAM(O) are Δθ(s|n – (n+1)|) ≈ 1.7° (n = even) and Δθ(s|n – (n+1)|) ≈ 3.1° (n = odd). A gradual increase in θ(s) with increasing length of the molecule was observed, with values ranging from water 104.7-110.7° (overall Δθ(s) = 6.0° while for the evens Δθ(s)(E) = 4.4° and odds Δθ(s)(O) = 3.5°) to diethylene glycol 72.9-80.4° (overall Δθ(s) = 7.5° while for the evens Δθ(s)(E) = 2.9° and odds Δθ(s)(O) = 2.4°) and hexadecane 40.4–49.4° (overall Δθ(s) = 9.0° while for the evens Δθ(s)(E) = 3.7° and odds Δθ(s)(O) = 2.1°). This article establishes that the gradual increase in θ(s) with increasing molecular size in SAMs is due to asymmetry in the zigzag oscillation in the odd-even effect. Comparison of the magnitude and proportion differences in this asymmetry allows us to establish the reduction in interfacial dispersive forces, due to increasing SAM crystallinity with increasing molecular size, as the origin of this asymmetry. By comparing the dependence of θ(s) on surface roughness we infer that (i) RMS roughness ≈ 1 nm is a theoretical limit beyond which the odd-even effect cannot be observed and (ii) on a hypothetically flat surface the maximum difference in hydrophobicity, as expressed in θ(s), is ∼3°.
منابع مشابه
Empirical Evidence for Roughness-Dependent Limit in Observation of Odd-Even Effect in Wetting Properties of Polar Liquids on n-Alkanethiolate Self-Assembled Monolayers.
Substrate roughness influences the wetting properties of self-assembled monolayers (SAMs), but details on this dependency at the sub-nanometer level are still lacking. This study investigates the effect of surface roughness on interfacial properties of n-alkanethiolate SAMs, specifically wetting, and confirms the predicted limit to the observation of the odd-even effect in hydrophobicity. This ...
متن کاملThe Porter-Whitesides Discrepancy: Revisiting Odd-Even Effects in Wetting Properties of n-Alkanethiolate SAMs
This review discusses the Porter-Whitesides discrepancy in wetting properties of n-alkanethiolate self-assembled monolayers (SAMs). About 25 years ago, Whitesides and coworker failed to observe any odd-even effect in wetting, however, Porter and his coworker did, albeit in select cases. Most previous studies agreed with Whitesides’ results, suggesting the absence of the odd-even effect in hydro...
متن کاملOdd-even effect in the hydrophobicity of n-alkanethiolate self-assembled monolayers depends upon the roughness of the substrate and the orientation of the terminal moiety.
The origin of the odd-even effect in properties of self-assembled monolayers (SAMs) and/or technologies derived from them is poorly understood. We report that hydrophobicity and, hence, surface wetting of SAMs are dominated by the nature of the substrate (surface roughness and identity) and SAM tilt angle, which influences surface dipoles/orientation of the terminal moiety. We measured static c...
متن کاملEffect of Substrate Morphology on the Odd-Even Effect in Hydrophobicity of Self-Assembled Monolayers.
Surface roughness, often captured through root-mean-square roughness (Rrms), has been shown to impact the quality of self-assembled monolayers (SAMs) formed on coinage metals. Understanding the effect of roughness on hydrophobicity of SAMs, however, is complicated by the odd-even effect-a zigzag oscillation in contact angles with changes in molecular length. We recently showed that for surfaces...
متن کاملThe Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering
The aim of this paper is to study the effect of substrate on the Cu3N thin films. At first Cu3N thin films are prepared using DC magnetron sputtering system. Then structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques respectively. Finally, the results are investigated and c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 31 25 شماره
صفحات -
تاریخ انتشار 2015